Example-dependent cost-sensitive credit cards fraud detection using SMOTE and Bayes minimum risk
نویسندگان
چکیده
منابع مشابه
Fraud Detection of Credit Cards Using Neuro-fuzzy Approach Based on TLBO and PSO Algorithms
The aim of this paper is to detect bank credit cards related frauds. The large amount of data and their similarity lead to a time consuming and low accurate separation of healthy and unhealthy samples behavior, by using traditional classifications. Therefore in this study, the Adaptive Neuro-Fuzzy Inference System (ANFIS) is used in order to reach a more efficient and accurate algorithm. By com...
متن کاملCredit Card Fraud Detection using Data mining and Statistical Methods
Due to today’s advancement in technology and businesses, fraud detection has become a critical component of financial transactions. Considering vast amounts of data in large datasets, it becomes more difficult to detect fraud transactions manually. In this research, we propose a combined method using both data mining and statistical tasks, utilizing feature selection, resampling and cost-...
متن کاملCredit Card Fraud Detection Using Neural Network
The payment card industry has grown rapidly the last few years. Companies and institutions move parts of their business, or the entire business, towards online services providing e-commerce, information and communication services for the purpose of allowing their customers better efficiency and accessibility. Regardless of location, consumers can make the same purchases as they previously did "...
متن کاملCost Stickiness and Banks Credit Risk
The credit risk in banks is a function of the profitability and quality of bank assets. Moreover, cost stickiness also affects the quality of assets and profitability of banks. To achieve the research aims, is to explore relationship between cost stickiness and banks credit risk were tested and analyzed is based on pooling data from 21 banks in duration 2012-2019. The findings show that there i...
متن کاملExample-dependent cost-sensitive decision trees
Several real-world classification problems are example-dependent cost-sensitive in nature, where the costs due to misclassification vary between examples. However, standard classification methods do not take these costs into account, and assume a constant cost of misclassification errors. State-of-the-art example-dependent cost-sensitive techniques only introduce the cost to the algorithm, eith...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SN Applied Sciences
سال: 2020
ISSN: 2523-3963,2523-3971
DOI: 10.1007/s42452-020-03375-w